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A high-frequency sum-rule expansion is derived for the transverse elements of 
the relativistic classical plasma dielectric tensor in an isotropic system. The 
relativistic results are different from the nonrelativistic ones by a factor of 
(7 -1(1-  v2/3c2)) for ll~'~(k) and longitudinal plasmon and transverse photon 
frequencies, and by (7-2(1-2v2/3c2)) for f l~ (k) .  

1. INTRODUCTION 

High-frequency sum-rule expansions of the full response tensor of 
nonrelativistic classical and quantum plasmas both in the absence and 
presence of an external magnetic field are known (Kalman and Genga, 
1986; Genga, 1988a, c; b, in press). However, the relativistic plasma case 
has received no attention. It is known that in an isotropic system the dielectric 
tensor has two independent elements, the longitudinal and transverse (with 
respect to the wave vector k) elements. Therefore, in order to study the 
high-frequency behavior of the full dielectric tensor, one has to analyze the 
transverse element. 

In this work I study the high-frequency behavior of the full dielectric 
tensor in an isotropic situation up to order to -4. The method of derivation 
relies on the Hamiltonian formalism (Kalman and Genga, 1986; Genga, 
1988a). As in the nonrelativistic case (Kalman and Genga, 1986; Genga, 
1988a), one also enlarges the Hamiltonian so as to include the photon 
degrees of freedom; this allows the description of the transverse interaction. 
As a result of this, it is known (Kalman and Genga, 1986; Genga, 1988a) 
that in addition to particle contributions to the sum-rule coefficients, the 
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photon gas coexistent with the high-temperature plasma generates its own 
contribution. The exact evaluation of this contribution is hindered by two 
conditions (Kalman and Genga, 1986; Genga, 1988a): First, the classical 
ultraviolet divergence requires that even within the framework of a classical 
theory one describes the photons via the quantum Bose-Einstein distribu- 
tion. Second, the equilibrium description implies that one single temperature 
exists for the combined photon system. Such an equilibrium exists in the 
astrophysical situation. Thus, an ad hoc approximation described in 
Section 2 is used to decouple the photons from the particle system. 

In Section 2, I review the general relationships between the external 
or current-current response function sum-rule coefficients and those of the 
dielectric tensor. Then I calculate the exact to-4 sum-rule coefficient for the 
transverse element. The long-wavelength limit of the result is calculated in 
Section 3; its possible implications for the dispersion relation of transverse 
plasma modes is also discussed. The results in Section 2 are obtained by 
using the same procedure as that given for the nonrelativistic classical 
magnetic-field-free case (Kalman and Genga, 1986, Appendix). 

2. TRANSVERSE SUM RULES 

The full dielectric tensor e~"(k~o) and the full polarizability tensor 
a~V(k~o) are expressible in terms of the corresponding "external" quantity 
~"(koJ) as 

O/, : ~ s  - -  o / . ) - 1 A  

A= 11- n2T 
(1) 

n = kc/~o 

T = 11 - k k / k  2 

and ~'~(kto) possesses the well-known high-frequency sum-rule expansion 

&U,(kto) = ~ f/t+l(k) - t + ~  ( 2 )  
I = l  0.) 

1 o d d  

^ 

et~,,(kto)= - ~ [~+l(k) . (3) 
l ~ 2  (.0 

I e v e n  

where the superscript H stands for "Hermitian part of" and prime and 
double prime denote "real part of" and "imaginary part of," respectively. 
The 1~ coefficients are evaluated from the relation (Kalman and Genga, 
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1986; Genga, 1988a) 

/1_1 
^ ~ 47re 2 fl i d 
~'~ ~+l(k) = v (j~(~')k(o))l~=o ((4) 

where 

j~ =Y~ v~ e x p ( - i k ,  xi) (5) 
i 

The high-frequency expansion of ot(kto) is similar to that of &(kw) as given 
by (2) and (3), with l~+l(k) replacing the corresponding ~/+l(k)- S. 

As mentioned in the introduction, the Hamiltonian which takes into 
account the description of the interaction of the plasma with the transverse 
electromagnetic field must include the photon degrees of freedom. Therefore 
we have 

N 
H Z yirncZ+�89 Z V(lxi +' = -xj[) 2Z (eqeq+qZc2aqaq) (6) 

i=1 i # j  q 

where 

( 3'~ = 1 - c2 ] 

[Pi+ iAEq tiq exp(iq,  x,)]/rn 
Vi = {1 + (1/m2c 2) [/5 i + iA Eq aq exp(iq �9 xi)]2} 1/2 

A=  ie(4~) 1/2 

(7) 

Since we are considering the magnetic-field-free case, the system is 
isotropic and & is diagonal; thus, only 1~12 and 1~4 survive. Further, in a 
coordinate system in which k = (0, 0, k), one is left only with f~22 and 12 33 
elements. 

The first moment yields 

^ 4~-e 2 
l )~ (k )  = ~ tip (j~(O)j~-k(O)) 

.o:( 
(8) 
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The third moment leads to 

4 ~ e 2  "~v �9 
fi2~(k) = - ' ~  fl(Jk (O)jk(O)) 

4qre 2 
+ k k Vi Vi - Vi V j - t k  Vi Vj v ~E( (v ,  v, 

U 

�9 ot " / z  8 v + lk V, Vj V~ ) exp[ - ik .  (x,-xj)]) ,  (9) 

where l)'~ is the acceleration of the ith particle in the I-* direction given by 

Ym'( V ~ v ~ ' f  O~ exp(iq x~) ~r~: 8 ~'~- c2 ) l - ~ x ~ - i A  ~ e: �9 

+ A ~ [V~ x (q x ~q) ]O~ exp(iq, xj) } (10) 
q 

with 

Odp OH OK 
ox7 OXl ox7 

K =~ 71mc 2 (11) 
i 

=~ Y. V(Ix,-xjl) 

As in the nonrelativistic classical plasma case (Kalman and Genga, 1986; 
Genga, 1988a), the presence of the photon degrees of freedom a~, e~ gives 
rise to averages of field coordinates of the form (a~a~) and (eq eq), which 
in strict thermal equilibrium are expressible in terms of inverse particle 
temperature tip and radiation temperature fir, respectively. These averages 
have to be calculated quantum mechanically even in the framework of a 
classical theory such as the one under consideration. Introducing 

(12) 
tOq = q c  

~i and as a new set of coordinates with the polarization vectors eq, 
i i, ~ (13) n q ~- Cq Cq 

identified as the equivalent of the photon number operator, then averages 
are evaluated by setting (Kalman and Genga, 1986; Genga, 1988a) 

1 
(n~) = exp(fl,hwq) - 1 
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Thus, equation (9) leads to 

~4/ -2[ 2V2\[ ~rr 

k 2 1 ,,~ 
+~(3Lf~+~ rf')+~ L, (&_,-S,) 

]) 
where 

Lk = "~ 

(14) 

kX, k v 
T ~ =  3 ~'~- k--- T- 

xk = hcok/3r (15) 

x 

f ( x )  = e~ _ 1 

Equation (14) is obtained by arguing as before (Kalman and Genga, 1986; 
Genga, 1988a) that in the limit k-~0 the distinction between particle 
(longitudinal) and radiation (transverse) temperatures is meaningless; 
hence,/3r is treated as a k-independent quantity, such tha t /3 , (k~  0 )=  13p, 
while/3,(k r 0) is unaffected by this condition, 

3. LONG-WAVELENGTH LIMIT 

The elements of  the frequency moments in the long-wavelength (k-+ 0) 
limit are as follows: 

f i~(k)  = fl~2(k) - A33_ : -, - * , 2  - w p  ~/ 1 -  

4 [ - 2 [  1 2V2'~ l~1'(k)=l~'~2(k)=r T k--~-c2]) 
k2 /3 v 

x l+~-~(1-~flpGor;)q  fl~nh3c 3 
(16) 

F~r 2 1 G o + ~ _ 5 ( 5 G , + 2 G 2 ) k 2 ] }  

l l~3(k)=0@(T-2(1 2 V 2 \ \ f  k 2 " , 

~ [ - - + T - - / G o + = - Z - ~  ( 5G, 
p , n n  e L45 31r 30~r J J  
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where 

Genga 

n 4~e 2 

Go= I dxx2f(x)ng" 

G I = I  dxx2f(x) l 0 q ~q ngq (17) 

G2 = dx x2f(x) - -  ngq Oq 2 

K 2 = 41re2n~p 

It can be seen that relativistic results are different from the corresponding 
nonrelativistic ones (Kalman and Genga, 1986) by a factor of ( T - l ( 1 -  
V2/3c2)) for I l l (k)  and (y-2(1-2V2/3c2)) for a2"(k). 

I now determine the possible relativistic implication for the dispersion 
relation of transverse plasma modes. The dispersion relation which deter- 
mines the behavior of longitudinal plasmons is given by 

e33(kw) = 1 + ot33(k~ ) (18) 

After applying a small perturbation on the dispersion relation, one finds 
that the plasmon frequency becomes 

i) 2 
o)2(k)=wzp(y-l(1-~C2))[l+CL(y,  flr)+aL(y, f l r )~  ] (19) 

where 

4 1 flpK 2 (5Gl+  G2) AL(TI fir) = 3 -t- ]~flpEcorr-t- 3(7r 2 ~47/~3C3 

/3p [ 2 5 Go\ 
(20) 

For transverse photons, one determines the behavior of the system 
through the dispersion relation 

~ 1 1 ( k ~ )  =- 1 + ~ . ( k ~ )  = n 2 ( 2 1 )  



Relativistic Classical Plasma Dielectric Tensor 77 

This results in the photon frequency of the form 

(( v3 [ 1 ~o2(~:)=~o~ ~-1 1_}__~c ~ l+cL(%~r)+A,(%~r)~ +k2c 2 (22) 

where 

are 

/~p __K 2 

A ,  = 1 -213pE  . . . .  "Jr 307r 2 f l4nh3c 3 ( 5 G l + 2 G 2 )  (23) 

The relativistic longi tud ina l  p lasma and  transverse pho ton  frequencies  

different from the corresponding nonrelat ivis t ic  ones ( K a l ma n  and  
Genga, 1986) by a factor of (y-l(1 - V2/3c2)). 
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